
RELAXATION APPROXIMATION IN THE THEORY

OF SHEAR TURBULENCE

Robert Rubinstein*
Institute for Computer Applications in Science and Engineering

NASA Langley Research Center
Hampton, Virginia 23681

Abstract

Leslie's perturbative treatment of the direct interaction approximation for shear tur-
bulence (Modern Developments in the Theory of Turbulence, 1972) is applied to derive a
time dependent model for the Reynolds stresses. The stresses are decomposed into tensor
components which satisfy coupled linear relaxation equations; the present theory therefore
di�ers from phenomenological Reynolds stress closures in which the time derivatives of the
stresses are expressed in terms of the stresses themselves. The theory accounts naturally
for the time dependence of the Reynolds normal stress ratios in simple shear 
ow. The
distortion of wavenumber space by the mean shear plays a crucial role in this theory.
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I. Introduction

Time dependent theories of turbulence can be derived by closing correlations in the
exact stress rate equations in terms of the stresses themselves.1;2 The present work is based
instead on Leslie's observation3 that the direct interaction approximation (DIA) equations
for shear 
ow4 can be solved by a perturbation series in the strain rate; the goal is to
apply Leslie's ideas to single point time dependent turbulence modeling. This application
of DIA is natural since DIA is a time dependent theory, but since the fully transient time
evolution of turbulence cannot be described at the single point level, approximations are
required. Following Leslie and Yoshizawa,5 we assume that the imposed strain is small
enough and varies slowly enough to permit treating it as a perturbation of a background
state of isotropic turbulence. In this limit, single point relaxation approximations6 can be
derived by requiring that the model agree with the universal long and short time limits of
the two point theory.7

The model which results has the \viscoelastic" character emphasized by Crow:8 in
simple shear 
ow in which @Ui=@xj = S�i1�j2, the shear stress � is given at short times
by the rapid distortion theory (RDT) limit

� =
4

15
K t S (1)

where K is the turbulence kinetic energy and t is time; at long times � is given instead by
the eddy viscosity formula

� = C�
K2

"
S (2)

where " is the dissipation rate. The short and long time limits Eqs. (1) and (2) are also
satis�ed by previous time dependent models including the time dependent shear stress
model of Hanjalic and Launder9

_� = �CR
"

K
� +

4

15
KS (3)

by the time dependent eddy viscosity formula of Ref. 6, and by an RDT-based model
attributable to Townsend, Hunt, and Maxey.10

The present model extends these short and long time constraints to second order e�ects
including the inequality of normal stresses in simple shear 
ow. In this case, the short time
limit was computed by Maxey;10 the long time limit is the nonlinear eddy viscosity formula
of Pope11 (see also Ref. 12, 13 and 14). An interesting property of the Reynolds normal
stresses is the time dependence of their ratios: de�ning bij = 2=3�ij � �ij=2K, the short

time ratios are10

b11 : b22 : b33 = 8 : �13 : 5 (4)

whereas at long times, very nearly1;2

b11 : b22 : b33 = 4 : �3 : �1 (5)

Previous theories do not give entirely satisfactory accounts of the transition between these
short and long time ratios. The complete Launder-Reece-Rodi (LRR) stress transport
model15 which generalizes Eq. (3) predicts that the long and short time normal stress
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ratios are equal; the model is calibrated to predict the practically more signi�cant long
time ratios correctly. More complex second moment closures which are nonlinear in the
Reynolds stresses could certainly be made consistent with both limits, but the nonlinearity
is itself problematical, especially when rapid distortion limits are relevant.1;2 The RDT
model of Ref. 10 automatically agrees with the short time limit when it is formulated for
initially isotropic turbulence but the corresponding long time limits are not satisfactory; the
model is therefore recalibrated by assuming initially anisotropic turbulence. The degree of
anistropy is chosen to match the long time limits; this adjustment slightly alters the short
time ratios. Despite some quantitatively successful predictions of certain time dependent

ows using this model,16 this account of time dependent turbulence does not preclude
further investigation.

Unlike the advanced second moment closures described in Ref. 1 and 2, the present
model is entirely linear; the complexity required to account for the second order long
and short time limits enters through a decomposition of the Reynolds stress into tensor
components with distinct time dependent behavior. The decomposition is determined
by a geometric feature of shear turbulence, the distortion of wavenumber space by the
mean shear. This e�ect is often treated as a weak mechanism of energy transfer by eddy
distortion;18 it proves to be negligible at short times but su�ciently important at long times
to bring about the transition from Eq. (4) to Eq. (5). The introduction of quantities with
di�erent time dependence is generally consistent with Weinstock's suggestions19 that the
shear and normal stresses have distinct relaxational behavior.

It must be emphasized that the present theory is limited to small strain rates with
rapid distortion theory describing only the short time limit. The more di�cult problem of
turbulence at high strain rates is left to further investigations.

II. Simpli�ed DIA analysis of shear turbulence

The DIA generalized Langevin model20;21 for isotropic turbulence is

@

@t
ui(k; t) +

Z t

0

ds �(k; t; s)ui(k; s) = fi(k; t) (6)

where � is a damping function and f is a random force. In Eq. (6), the viscous term has
been dropped. De�ne the response function G as the inverse operator for the left side of
Eq. (6) so that

@

@t
G(k; t; s) +

Z t

s

dr �(k; t; r) G(k; r; s) = 0 (7)

and
G(k; t; t) = 1; G(k; t; s) = 0 for t < s (8)

De�ne the two time correlation function by

Qij(k; t; s)�(k + k0) = < ui(k; t)uj (k
0; s) > (9)

so that in isotropic turbulence

Qij(k; t; s) = Q(k; t; s)Pij (k)
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where k2 = k � k and Pij is the transverse projection operator

Pij(k) = �ij � kikjk
�2

Then the damping function � is related to G and Q by20;21

�(k; t; s) =

Z
k=p+q

dpdq Ptmn(k)Pmst(p)Pns(q)G(p; t; s)Q(q; t; s) (10)

where
Pimn(k) = kmPin(k) + knPim(k)

The random force fi in Eq. (6) is de�ned in terms of independent Gaussian random �elds
�i; �

0
i such that

< �i(k; t)�j (k
0; s) > = < �0i(k; t)�

0
j (k

0; s) > = Qij (k; t; s)�(k + k0) (11)

by

fi(k; t) = Pimn(k)

Z
k=p+q

dp dq �m(p; t)�
0
n(q; t) (12)

The DIA equations20;21 for G and Q follow from Eqs. (6)-(12). The existence of this
Langevin model insures the realizability of DIA and also brings forward some analogies to
statistical physics, where Eq. (6) arises as a generic model.22

The DIA theory of shear turbulence in the special case of spatially constant mean
velocity gradient3;4 can also be formulated as a generalized Langevin model

@

@t
ui(k; t) +

Z t

0

ds �im(k; t; s) um(k; s) = Sim(k; t)um(k; t) + fi(k; t) (13)

where the mean shear operator18 is

Sim(t) = �
@Ui

@xm
(t) + 2k�2kikp

@Up

@xm
(t) + �imks

@Us

@xr
(t)

@

@kr
(14)

and the damping, described by the tensor

�im(k; t; s) =

Z
k=p+q

dpdqPipn(k)Prsm(p)Gpr(p; t; s)Qns(q; t; s) (15)

need not be isotropic. The �rst two terms in the shear operator of Eq. (14) are the
production and rapid pressure strain terms; the third is generally described as a relatively
weak mechanism of energy transfer due to eddy distortion by the mean shear.18 This
e�ect can also be considered purely geometrically as a distortion of wavevector space. The
random force is de�ned as above in Eqs. (11),(12); however, the velocity correlation in
Eq. (11) must not be assumed isotropic. The shear 
ow DIA equations4 for Gij and Qij

follow from Eqs. (13)-(15).
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The equations of shear 
ow DIA seem to defy analysis; even numerical investigation is
hampered by the need to resolve a three dimensional anisotropic energy spectrum.23 How-
ever, a useful simpli�cation was suggested by Leslie:3 introduce an isotropic background
�eld u(0) satisfying Eq.(6), which we rewrite as

@

@t
u
(0)

i (k; t) +

Z t

0

ds �(0)(k; t; s)u
(0)

i (k; s) = f
(0)

i

to emphasize that the damping and forcing are isotropic. Formulated as a Langevin equa-
tion, Leslie's model is

@

@t
ui(k; t) +

Z t

0

ds �(0)(k; t; s) ui(k; s) = f
(0)

i (k; t) + Sip(k; t)up(k; t) (16)

in which the damping and forcing are isotropic and independent of the mean shear. Eq.
(16) can be rewritten in terms of the isotropic Green's function G(0), the solution of Eqs.
(7),(8) as

ui(k; t) =

Z t

0

ds G(0)(k; t; s) [f
(0)

i (k; s) + Piq(k)Sqp(k; s)up(k; s)] (17)

This model ignores any e�ects of the mean shear on the nonlinear transfer mechanism,
modeled by the damping and forcing in the Langevin equation. This is certainly an over-
simpli�cation. However, a large scale shear acting against an isotropic transfer mechanism
provides a plausible picture of shear turbulence. Moreover, the Kolmogorov time scale
� k�2=3 is much smaller than the time scale of the mean shear at su�ciently small scales.
It is reasonable to expect the perturbative treatment to be valid at such scales.

Because of this simpli�cation, it is important to compare Leslie's model with the full

DIA shear 
ow equations. Denote the solution of Eq. (16) by u
[1]

i . De�ne the �rst order

correction to the Green's function G
[1]

ij so that

u
[1]

i (k; t) =

Z t

0

ds G
[1]

ip (k; t; s)f
(0)
p (k; s) (18)

The �eld u
[1]

i can be used to construct a corrected correlation tensor

Q[1](k; t; s)�(k + k0) = < u[1](k; t)u[1](k0; s) > (19)

Substituting the corrected quantities G
[1]

ij ; Q
[1]

ij in Eq. (15) yields a corrected damping

�
[1]

ij and substituting in Eqs.(11),(12) yields a corrected forcing f
[1]

i . This approximation

scheme can be iterated. De�ne u
[n]
i for n � 2 as the solution of

@

@t
u
[n]
i +

Z t

0

ds �
[n�1]
ip u[n]p = Sipu

[n]
p + f

[n�1]
i
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De�ne G
[n]
ij and Q

[n]
ij given u

[n]
i by analogy to Eqs. (18),(19). If the u

[n]
i approach a limit,

the corresponding limits of G
[n]
ij and Q

[n]
ij are a solution of shear 
ow DIA. Leslie's model is

the �rst step in this iterative construction. It is therefore a rational approximation which
can be systematically corrected by further iteration.

III. Time dependent linear eddy viscosity

To derive the time dependent linear eddy viscosity, we follow Leslie3 and expand Eq.
(17) in powers of the mean strain rate about an isotropic background state u(0):

u = u(0) + u(1) + � � � (20)

The random force f (0) which maintains the background �eld3 is taken to be of the same
order as u(0); therefore, u(1) is given by

u
(1)

i (k; t) =

Z t

0

ds G(0)(k; t; s) Pim(k) Smn (k; s) u(0)n (k; s) (21)

If, corresponding to Eq. (20) the single time correlation function is expanded as

Q(k; t; t) = Q(0)(k; t) +Q(1)(k; t) + � � � (22)

where

Q
(1)

ij (k; t)�(k + k0) = < u
(1)

i (k; t) u
(0)

j (k0; t) + u
(0)

i (k; t)u
(1)

j (k0; t) >

and the higher order correlations are de�ned similarly, then Eq. (21) implies3

Q
(1)

ij (k; t) =

Z t

0

ds
�
G(0)(k; t; s)(�

@Ui

@xr
+ 2kikpk

�2 @Up

@xr
)Q

(0)

rj (k; t; s) + (ij)

+G(0)(k; t; s)kr
@Ur

@xn

@

@kn
Q
(0)

ij (k; t; s)

�Q
(0)

ij (k; t; s)kr
@Ur

@xn

@

@kn
G(0)(k; t; s)

	
(23)

where (ij) denotes index interchange in the immediately preceding term. The k derivative
terms represent the distortion of wavevector space by the mean shear. A decomposition of
the Reynolds stress follows from Eq. (22):

�ij = � < uiuj > = �
(0)

ij + �
(1)

ij + � � �

where

�
(n)
ij (t) = �

Z
dk Q

(n)
ij (k; t) (24)

Note that � (n) is homogeneous of degree n in the mean velocity gradient. In applying
Leslie's theory, it will be convenient to invoke the Markovianized version of DIA described
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in Appendix II. Evaluation of the angular integrals in Eqs. (23),(24) using Eq. (70) leads
to3

�
(1)

ij (t) =

Z t

0

ds

Z 1

0

dk
n 4

15
G(k; t; s)2�

2

15
G(k; t; s)k

d

dk
G(k; t; s)

o
E(k; s) Sij(s) (25)

where E(k; s) is the energy spectrum at time s, and

Sij =
@Ui

@xj
+
@Uj

@xi

is the strain rate. In Eq. (25) and what follows, the superscript (0) on the background
�eld descriptors has been dropped.

An equation similar to Eq. (25) has recently been derived by Woodru�24 by a scale
separation expansion similar to Yoshizawa's and has been developed into a subgrid scale
stress model. Our goal is instead the development of a single point model. Eq. (25)
suggests a decomposition of the �rst order stress,

�
(1)

ij =
4

15
T
(0)

ij +
2

15
T
(1)

ij (26)

where

T
(0)

ij (t) =

Z t

0

ds

Z 1

0

dk G(k; t; s)2 E(k; s) Sij(s)

T
(1)

ij (t) = �

Z t

0

ds

Z 1

0

dk G(k; t; s)k
� d
dk

G(k; t; s)
�
E(k; s)Sij(s) (27)

The term T (1) exhibits the distortion of wavevector space by the mean shear. The time
dependent model provided by Eqs. (26), (27) is purely formal because the time evolution
of G and E is not known but must be found in general by solving DIA to determine the
fully transient spectral dynamics. At this level of generality, single point modeling is not
possible; extracting a practical single point model requires further restrictions on the time
dependence. We can retain some of the time dependence of Eqs. (26), (27) following Smith
and Yakhot7 by requiring that the single point model agree with the essentially universal
short and long time limits of Eq. (27). It must be stressed that this model is necessarily
of quite restricted applicability; it cannot describe arbitrary complex strain rate histories.

At short times, we have
E(k; t) = E(k) +O(t)

Sij(t) = Sij +O(t)

and in view of Eqs. (7), (8),

G(k; t; s) = 1 +O(t � s)2

dG

dk
(k; t; s) = O(t � s)2
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consequently,

T
(0)

ij = KtSij +O(t2); T
(1)

ij = O(t2) (28)

Substituting in Eq. (26), there results

�
(1)

ij =
4

15
Kt Sij +O(t2) (29)

in agreement with Crow's8 RDT calculation. The long time limit is a hypothetical steady
state de�ned by setting E(k; t) and S(t) to constants, setting G equal to its time stationary
form

G(k; t; s) = G(k; t� s) = exp[��(k)(t� s)] (30)

from Appendix II, Eq. (68), and setting t = 1 in Eq. (27). Exactly homogeneous shear
turbulence is never naturally in a steady state; this long time limit occurs only locally
in inhomogeneous 
ows like the log layer where it can be maintained by strong turbulent
di�usion.

After substituting in Eq. (26), the result is the eddy viscosity representation

�
(1)

ij = �TSij (31)

where

�T =
4

15

Z 1

0

dk �0E +
2

15

Z 1

0

dk k�0�1E(k) (32)

and �i are time moments of the stationary Green's function of Eq. (30),

�n =

Z 1

0

d� �nG(k; �)2 =
n!

(2�)n+1
(33)

Results like Eq. (32) which express turbulent transport coe�cients in terms of integrals of
inertial range quantities also arise in Yoshizawa's theories.5 In view of the appearance of
the time integrals �n of response functions de�ned in Eq. (33), Eq. (32) can be compared
to Kubo formulas25 expressing molecular transport coe�cients in terms of integrals of
equilibrium correlation functions.

It remains to construct a relaxation model for T (0) and T (1) which is consistent with
these limits. In both limits, the mean shear can be considered constant; therefore, it
su�ces to consider the time evolution of the quantities

t(0) =

Z 1

0

dk

Z t

0

ds G(k; t; s)2 E(k; s) (34)

t(1) =

Z 1

0

dk

Z t

0

ds k�0(k) (t � s) G(k; t; s)2 E(k; s) (35)

In Eq. (35), the k derivative of Eq. (27) has been evaluated using the time stationary

form for G of Eq. (30). Approximate the time evolution of t(0) by the relaxation model

_t(0) = K � C
(0)

R �t(0) (36)
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where

� =
"

K

is a frequency of the largest turbulent scales and the relaxation constant C
(0)

R is to be
determined. The relaxation model Eq. (36) has been chosen to agree with the short time
limit of Eq. (34)

t(0) = Kt+O(t2) for t! 0

To match long time limits, set _t(0) = 0 in Eq. (36) and replace t(0) by its long time limit
computed from Eq. (34). The result is

C
(0)

R � =

R1
0

dk ER1
0

dk �0E
(37)

This procedure can also be applied to the term t(1) in Eq. (35). The relation

_t(1) =

Z 1

0

dk

Z t

0

ds
�
k�0(k) + 2�(k)k�0(k)(t � s)

	
G(k; t; s)2E(k; s) (38)

suggests the relaxation approximation

_t(1) = C
(1)

S �t(0) �C
(1)

R �t(1) (39)

This relaxation model has the same short time limit, t(1) = O(t2) as Eq. (35). Since only
the O(t) term in Eq. (34) has been matched, it would be inconsistent to match terms of

order t2 in Eqs. (35) and (39). Instead, C
(1)

S is determined by equating the long time limit

of C
(1)

S �t(0) to the long time limit of the �rst term on the right side of Eq. (38):

C
(1)

S � =

R1
0

dk k�0 �0ER1
0

dk �0E
(40)

Now C
(1)

R can be determined by setting _t(1) = 0 in Eq. (39), replacing t(1) by its long time
limit evaluated from Eq. (35). The result is

C
(1)

R � =

R1
0

dk 2� k�0 �1ER1
0

dk k�0 �1E
(41)

Substituting the relaxation approximations Eqs. (36), (39) for t(i) into the de�nitions of

T (i) in Eqs. (26), (27), leads to the relaxation approximation for shear stress

�
(1)

ij =
4

15
T
(0)

ij +
2

15
T
(1)

ij

_T
(0)

ij = KSij � C
(0)

R �T
(0)

ij

_T
(1)

ij = C
(1)

S �T
(0)

ij �C
(1)

R �T
(1)

ij

(42)
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Eqs. (37), (40), and (41) express the relaxation constants C
(0)

R ; C
(1)

R ; C
(1)

S in terms
of the energy spectrum E(k) and damping function �(k) which can be assumed to have
Kolmogorov inertial range forms

E(k) = CK"
2=3k�5=3 �(k) = CT "

1=3k2=3 for k � k0

where CK and CT are universal inertial range constants, and k0 is a (nonuniversal) cuto�
for inertial range scaling in any particular problem. The dependence of the relaxation
constants on the cuto� scale k0 and on the form of the spectrum and relaxation function
in the far infrared region k � k0 must be investigated. Rewrite Eq. (37), for example, as

a formula for C
(0)

R using the de�nition of �:

C
(0)

R =
1

"

�R1
0

dk E(k)
�2

R1
0

dk �0E(k)

and substitute the simplest expressions for E and � in which E(k) = �(k) = 0 for k � k0.

Then both numerator and denominator scale as k
�4=3
0 ; C

(0)

R is therefore independent of
the cuto� scale k0. Consequently, the relaxation constants can be evaluated in the in�nite
Reynolds number limit in which k0 ! 0 and treated as universal properties of the inertial
range alone. Thus,

C
(0)

R = 6CKCT

This result is approximate, but the exact value given by Eq. (37) depends only weakly on
k0 and the particular form of the spectrum and time scale when k � k0.

IV. Time dependent nonlinear eddy viscosity

Calculation of Leslie's expansion to second order is tedious but straightforward. The
result is

Q
(2)

ij (k; t) =
X

1�N�6

I(N)[a(N) @Ui

@xp
(s)

@Uj

@xp
(r) + b(N) @Ui

@xp
(s)

@Up

@xj
(r) + c(N)@Up

@xi
(s)

@Uj

@xp
(r)

+ d(N)@Up

@xi
(s)

@Up

@xj
(r) + e(N)�ij

@Up

@xq
(s)

@Uq

@xp
(r) + f (N)�ij

@Up

@xq
(s)

@Up

@xq
(r)]

+ (ij) (43)

in which the I(N) are integral operators

I(1) =

Z t

0

ds G(k; t; s)

Z s

0

dr G(k; s; r)G(k; t; r)Q(k; r)

I(2) =

Z t

0

ds G(k; t; s)

Z s

0

dr G(k; s; r)k
d

dk
[G(k; t; r)Q(k; r)]

I(3) =

Z t

0

ds G(k; t; s)

Z s

0

dr G(k; s; r)k2
d2

dk2
[G(k; t; r)Q(k; r)]
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I(4) =

Z t

0

ds G(k; t; s)

Z t

0

dr G(k; t; r)G(k; j s; r j)Q(k; r) (44)

I(5) =

Z t

0

ds G(k; t; s)

Z t

0

dr G(k; t; r)k
d

dk
[G(k; j s; r j)Q(k; r)]

I(6) =

Z t

0

ds G(k; t; s)

Z t

0

dr G(k; t; r)k2
d2

dk2
[G(k; j s; r j)Q(k; r)]

understood to act on products of mean velocity gradients by integration over r and s
and (ij) denotes index interchange. In Eq. (43), a(N),...f (N) are the following geometric
constants:

(1) (2) (3) (4) (5) (6)

105a(N) 27 �1 �2 19
2

�1
2

�1

105b(N) 20 6 �2 6 3 �1
105c(N) �15 �15 �2 5

2
�15

2
�1

105d(N) 20 �8 �2 �22 �4 �1
105e(N) 10 24 6 3 12 3
105f (N) �4 24 6 10 12 3

and
G(k; j s; r j) = G(k; s; r) +G(k; r; s)

As in all derivations of this type10;12;13;14, these constants arise from integrating even order
products kikj; :::: over spheres k = constant. It is easily veri�ed that these results reduce
to Maxey's10 second order RDT calculation when G � 1.

In extending the relaxation approximation to second order terms in the strain, Q and
@Ui=@xj can be taken independent of time in Eq. (43). In this case, the integrals in Eq.
(44) satisfy

I(4) = 2I(1) I(5) = 2I(2) I(6) = 2I(3)

Taking traces in Eqs. (43) and (44), we �nd thatZ
dk Qii(k) =

4

15
Kt2

@Up

@xq

@Up

@xq
(45)

exactly equals the energy produced at short times by the shear given by Eq. (29). This
suggests absorbing the trace of Eq. (43) in the energy equation and retaining only deviators
in the stress model. Although this procedure is strictly valid only at short times, we will
generalize it to arbitrary times, recognizing that this is an additional assumption. Another
important property of the geometric coe�cients in Eq. (43) is

2(a(N) + 2a(N+3))
@Ui

@xp

@Uj

@xp
+ (b(N) + 2b(N+3) + c(N)+ 2c(N+3))(

@Ui

@xp

@Up

@xj
+
@Uj

@xp

@Up

@xi
)

+ 2(d(N) + 2d(N+3))
@Up

@xi

@Up

@xj

= (a(N) + 2a(N+3))(
@Ui

@xp
Spj +

@Uj

@xp
Spi) + (d(N) + 2d(N+3))(

@Up

@xi
Spj +

@Up

@xj
Spi) (46)
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The importance of this condition, which states that the stress vanishes when the strain
rate tensor Sij vanishes, was �rst clari�ed by Speziale.12;13;14 It permits a consolidation
of the perturbation expansion by replacing time integrals of S by stresses; compare in this
respect the procedures of Ref. 26 and 27. These relations have recently been veri�ed in
Yoshizawa's theory.28

The second order analogs of the quantities t(i) of Eqs. (34), (35) are

s(i;j) =

Z 1

0

dk

Z t

0

ds (k�0)i(t� s)iG(k; t; s)2
Z s

0

dr (k�0)j(s � r)jG(k; s; r)2E(k)

s(i;j)
0

=

Z 1

0

dk

Z t

0

ds (k�0)i(t� s)iG(k; t; s)2
Z s

0

dr (k�0)j(s � r)jG(k; s; r)2 �

d

dk
(kE) (47)

s(i;j)
00

=

Z 1

0

dk

Z t

0

ds (k�0)i(t� s)iG(k; t; s)2
Z s

0

dr (k�0)j(s � r)jG(k; s; r)2
d2

dk2
(k2E)

where 0 � i; j � 2 and 0 � i + j � 2. The term s(0;0) is of order t2 at short times. The
terms s(i;j) with (i; j) 6= (0; 0) are evidently of order t3 or higher; integration by parts

shows that s(0;0)
0

and s(0;0)
00

are also of order at least t3. Thus, short time limit of the
second order quantities is determined by terms containing s(0;0). It is shown in Appendix
I that that these terms can be written as

�
(2)

ij = �
(1)

ij � 3�
(2)

ij + 12�
(6)

ij (48)

where the quantities �(1); �(2); �(6) satisfy relaxation equations

_�
(1)

ij = T
(1;0)
ij � C

(0;0)
R ��

(1)

ij

_�
(2)

ij = T
(2;0)
ij � C

(0;0)
R ��

(2)

ij

_�
(6)

ij = T
(3;0)
ij � C

(0;0)
R ��

(6)

ij (49)

The relaxation constant C
(0;0)
R is de�ned by a quotient analogous to Eq. (37) given in

Appendix I, and the T (i;j) are de�ned by

T (ij)
mn = (a(i) + 2a(i+3))

�@Um
@xp

T (j)
pn +

@Un

@xp
T (j)
pm �

1

3
�ij

@Uq

@xp
T (j)
pq

	

+ (d(i) + 2d(i+3))
� @Up
@xm

T (j)
pn +

@Up

@xn
T (j)
pm �

1

3
�ij

@Uq

@xp
T (j)
qp

	
(50)

in terms of the quantities T (i) de�ned in Eq. (27). Absorbing the r integration this way
is justi�ed by the property Eq. (46) of the second order geometric constants, and taking
deviators is justi�ed by the discussion following Eq. (45).

For simple shear 
ow, the model de�ned by Eq. (48) predicts that the short time
dimensionless Reynolds normal stresses deviators are

b11 =
2

3

8

105
S2t2 b22 =

2

3

�13

105
S2t2 b33 =

2

3

5

105
S2t2
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in agreement with Maxey's RDT calculation;10 in particular, the normal stress ratios are
given at short time by Eq. (4). However, this model predicts the same normal stress
ratios at long and short times. The long time ratios can be corrected by adding terms
to the model which vanish to higher order at short times. As noted earlier, such terms
originate with the k derivatives in the shear operator Eq. (14). A complete model based
on analysis of all the terms is presented in Appendix I. Since it is only remotely possible
that so elaborate a model could be useful in practice, we will present a simple model with
the correct long time stress ratios. Using the notation for components of the second order
stress in Appendix 1, this model is

�
(2)

ij = �
(1)

ij � 3�
(2)

ij + 12�
(6)

ij � 4�
(8)

ij (51)

where the stress components satisfy relaxation equations Eq. (49) above and

_�
(8)

ij = T
(3;1)
ij � C

(0;1)
R ��

(8)

ij (52)

Adding the term �4�(8) corrects the long time normal stress ratios. Here, the coe�cient
�4 has been adjusted so that assuming

C
(0;0)
R = C

(0;1)
R = C�R

the long time limit is

b11 =
1

C�RC
0
R

16

105

�SK
"

�2
b22 =

1

C�RC
0
R

�12

105

�SK
"

�2
b33 =

1

C�RC
0
R

�4

105

�SK
"

�2

Setting the phenomenological constant

C�R = 2:00

gives b11 = :19 in equilibrium 
ows for which SK=" = 3:3. As the normal stresses are also
in the ratio Eq. (5), the long time limit is in good agreement with experimental data.1;2

The introduction of di�erent relaxation constants C
(i)
R and C(ij)R for the shear and

normal stresses has been advocated previously by Weinstock.19 Many of the phenomena
discussed in Ref. 19 could be described by models of this type.

V. Conclusions

Leslie's perturbative treatment of the DIA equations for shear 
ow has led to a model
of second order e�ects with the following properties:

1. The model consists of linear relaxation equations. This attribute should be compared
with models nonlinear in the stresses recently criticized by Speziale:1;2 such nonlin-
earity can be problematical in connection with rapid distortion limits.

2. The model correctly accounts for the change in Reynolds normal stress ratio from
short to long times. This property is interesting from a theoretical standpoint despite
the limited practical importance of the short time normal stress ratios.

12



3. In this model, the shear stress determines the normal stresses, which occur as e�ects
of higher order. This property contrasts with stress transport models like LRR in
which the normal stresses in
uence the shear stresses.

The limitation of the model to small strain rates and to strain rate histories which
are not extremely complex must be noted. This model can be applied to predict normal
stresses in oscillating 
ows. This problem has been successfully treated using the RDT
based model by Mankbadi and Brereton,16;17 however, as noted previously their model
slightly modi�es the short time ratios.

Appendix I. Derivation of second order relaxation model

The second order calculation requires the quantity

t(2) =

Z 1

0

dk

Z t

0

ds (k�0)2(t� s)2G(k; t; s)2E

analogous to t(0) and t(1) in Eqs. (34), (35). The relaxation model

_t(2) = 2C
(2)

S �t(1) � C
(2)

R �t(2)

is derived like the model for t(1); the result is

C
(2)

S � =

R1
0

dk (k�0)2�1ER1
0

dk k�0�1E
C

(2)

R � =

R1
0

dk 2� (k�0)2 �2ER1
0

dk (k�0)2�2E
(53)

The de�nitions Eq. (50) of T (ij) now apply when j = 2.

Appropriate relaxation approximations for the time evolution of the s(ij) Eq. (47) are

_s(0;0) = t(0) �C
(0;0)
R �s(0;0)

_s(1;0) = C
(1;0)
S �s(0;0) �C

(1;0)
R �s(1;0)

_s(0;1) = t(1) �C
(0;1)
R �s(0;1)

_s(2;0) = 2C
(2;0)
S �s(1;0) �C

(2;0)
R �s(2;0)

_s(1;1) = C
(1;1)
S �s(0;1) �C

(1;1)
R �s(1;1)

_s(0;2) = t(2) �C
(0;2)
R �s(0;2)

where the relaxation constants are determined by

C
(0;0)
R � =

R1
0

dk 2��1ER1
0

dk �1E

C
(1;0)
S � =

R1
0

dk k�0�1ER1
0

dk �1E
C

(1;0)
R � =

R1
0

dk 2�k�0�2ER1
0

dk k�0�2E

C
(2;0)
S � =

R1
0

dk (k�0)2�2ER1
0

dk k�0�2E
C

(2;0)
R � =

R1
0

dk 2�(k�0)2�3ER1
0

dk (k�0)2�3E
(54)

C
(1;1)
S � =

R1
0

dk(k�0)2�2ER1
0

dk k�0�2E
C

(1;1)
R � =

R1
0

dk 2�(k�0)2�3ER1
0

dk (k�0)2�3E

13



The remaining relaxation constants satisfy

C
(0;1)
R = C

(0;1)
R C

(0;2)
R = C

(1;1)
R = C

(2;0)
R

The second order part of the stress is the sum of contributions from I(N) + 2I(N+3)

for N = 1; 2; 3. The contribution from I(1) + 2I(4) is

�(1) =

Z 1

0

dk

Z t

0

ds G(k; t; s)2
Z s

0

dr G(k; s; r)2E(k)
�
(a(1) + 2a(4))(rUS + SrUT )

+ (d(1) + 2d(4)(rUTS + SrU)
	
D

where matrix notation is used and the subscriptD denotes deviatoric part. The relaxation
approximation is

_�(1) = T (1;0) � C
(0;0)
R �(1) (55)

The contribution from I(2) + 2I(5) can be written

Z
dk

Z t

0

ds G(k; t; s)

Z s

0

dr G(k; s; r)k
d

dk
[G(k; t; r)Q(k)]�

�
(a(2) + a(5))(rUS + SrUT ) + (d(2) + d(5))(rUTS + SrU)

	
D

= �3�(2) � �(3) � �(4) + �(5)

where

�(2) = s(0;0)
�
(a(2) + 2a(5))[rUS + SrUT ] + (d(2) + 2d(5))[rUTS + SrU ]

	
D

�(3) = s(1;0)
�
(a(2) + 2a(5))[rUS + SrUT ] + (d(2) + 2d(5))[rUTS + SrU ]

	
D

�(4) = s(0;1)
�
(a(2) + 2a(5))[rUS + SrUT ] + (d(2) + 2d(5))[rUTS + SrU ]

	
D

�(5) = s(0;0)
0�
(a(2) + 2a(5))[rUS + SrUT ] + (d(2) + 2d(5))[rUTS + SrU ]

	
D

and

s(0;0)
0

=

Z 1

0

dk G(k; t; s)2
Z

G(k; s; r)2
d

dk
(kE)

In the relaxation approximation,

_�(2) = T (2;0) � C
(0;0)
R ��(2)

_�(3) = C
(1;0)
S �T (2;0) � C

(1;0)
R ��(3) (56)

_�(4) = T (2;1) � C
(0;1)
R ��(4)

_�(5) = 2T (2;1) � C
(0;0)0

R ��(5)

where

C
(0;0)0

R � =

R1
0

dk 2��1(kE)
0R1

0
dk �1(kE)0

(57)
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Integral I(3) can be written

I(3) = I(3;1) + 2I(3;2) + I(3;3)

where

I(3;1) =

Z t

0

ds G(k; t; s)

Z s

0

dr G(k; s; r)k2[
d2

dk2
G(k; t; r)]k2Q

I(3;2) =

Z t

0

ds G(k; t; s)

Z s

0

dr G(k; s; r)[k
d

dk
G(k; t; r)][k3

dQ

dk
]

I(3;3) =

Z t

0

ds G(k; t; s)2
Z s

0

dr G(k; s; r)2k4
d2Q

dk2

The term proportional to I(3;1) can be written as

Z
dk I(3;1)

�
(a(3) + a(6))(rUS + SrUT ) + (d(3) + d(6))(rUTS + SrU)

	
D

= �C(7)�(7) � C(8)�(8) + �(9) + 2�(10) + �(11)

where

�(6) = s(0;0)
�
(a(3) + 2a(6))[rUS + SrUT ] + (d(3) + 2d(6))[rUTS + SrU ]

	
D

�(7) = s(1;0)
�
(a(3) + 2a(6))[rUS + SrUT ] + (d(3) + 2d(6))[rUTS + SrU ]

	
D

�(8) = s(0;1)
�
(a(3) + 2a(6))[rUS + SrUT ] + (d(3) + 2d(6))[rUTS + SrU ]

	
D

�(9) = s(2;0)
�
(a(3) + 2a(6))[rUS + SrUT ] + (d(3) + 2d(6))[rUTS + SrU ]

	
D

�(10) = s(1;1)
�
(a(3) + 2a(6))[rUS + SrUT ] + (d(3) + 2d(6))[rUTS + SrU ]

	
D

�(11) = s(0;2)
�
(a(3) + 2a(6))[rUS + SrUT ] + (d(3) + 2d(6))[rUTS + SrU ]

	
D

and the quantities C(7) and C(8) are

C(7) = C(8) =

R1
0

dk k2�00 �2ER1
0

dk k�0�2E

Relaxation approximations for the time evolution of these terms are

_�(6) = T (3;0) �C
(0;0)
R ��(6)

_�(7) = C
(1;0)
S ��(6) � C

(1;0)
R ��(7)

_�(8) = T (3;1) �C
(0;1)
R ��(8) (58)

_�(9) = 2C(2;0)��(7) � C
(2;0)
R ��(9)

_�(10) = �(8) � C
(1;1)
R ��(10)

_�(11) = T (3;2) �C
(0;2)
R ��(11)
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To evaluate the I(3;2) term, write

k3
dQ

dk
=

d

dk
(k3Q) � 3k2Q

then
Z

dk I(3;2)
�
(a(3) + a(6))(rUS + SrUT ) + (d(3) + d(6))(rUTS + SrU)

	
D

= 3�(7) + 3�(8) � �(12) � �(13)

where

�(12) = s(1;0)
d

dk
(kE)

�(13) = s(0;1)
d

dk
(kE)

and the relaxation approximations are

_�(12) = �C
(0;0)0

S ��(6) + 2C
(1;0)0

S ��(7) +C
(0;1)0

S ��(8) � C
(1;1)0

R ��(12) (59)

where the modi�ed transport coe�cients are

C
(0;0)0

S � =

R1
0

dk k(k�0)0�1ER1
0

dk �1E
C

(1;0)0

S � =

R1
0

dk (k�0)2 1
2
�2ER

k�0 1
2
�2E

C
(0;1)0

S � =

R1
0

dk (k�0)2 1
2
�2ER1

0
dk k�0 1

2
�2E

C
(1;1)0

R � =

R1
0

dk 2�k�0 1
2
�2(kE)

0R1
0

dk k�0 1
2
�2(kE)0

(60)

and
_�(13) = T (3;1) + 2T (3;2) �C

(0;1)0

R ��(13) (61)

where

C
(0;1)0

R � =

R1
0

dk 2�k�0 1
2
�2(kE)

0R1
0

dk k�0 1
2
�2(kE)0

(62)

To evaluate the contribution from I(3;3), write

k4Q00 = 12k2Q� 8(k3Q)0 + (k4Q)00

Then
Z

dk I(3;3)
�
(a(3) + a(6))(rUS + SrUT ) + (d(3) + d(6))(rUTS + SrU)

	
D

= 12�(6) + �(14) � 8�(15)

where

�(14) = s(0;0)
d

dk
(k3Q)
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has the relaxation approximation

_�(14) = 2T (3;1) �C
(0;0)0

R ��(14) (63)

and

�(15) = s(0;0)
d2

dk2
k4Q

has the relaxation approximation

_�(15) = �C
(0;0)00

S �T (3;1) + T (3;2) � C
(0;0)00

R ��(15) (64)

with

C
(0;0)00

S � =

R1
0

dk k2�00�1ER1
0

dk �1E
C

(0;0)00

R � =

R1
0

dk 2��1(k
2E)00R1

0
dk �1(k2E)00

(65)

To summarize, the second order model is

� (2) = �(1) � 3�(2) � �(3) � �(4) + �(5) + 12�(6) + (3 �C(7))�(7) + (3� C(8))�(8) + �(9)

+ 2�(10) + �(11) � �(12) � �(13) + �(14) � 8�(15)

where the �(p) satisfy the system of relaxation equations Eqs. (55), (56), (58), (61), (63),
(64) and the constants are de�ned by Eqs. (53), (54), (57), (60), (62), (65).

Appendix II. Markovianized DIA

Deriving useful conclusions from Leslie's theory requires analytical expressions for the
descriptors G(0) and Q(0) of the isotropic background �eld. Suitable expressions will be
obtained from a Markovianized DIA derived by evaluating the time dependence in the
distant interaction limit. Let the real function H(�); 0 � � <1 satisfy

H(0) = 1; H(�) < 1 for � > 0;

Z 1

0

H(�)d� < 1 (66)

Then standard properties of delta functions imply

�H(�(t � s)) � �(t � s) for �!1 (67)

Evaluate Eq. (10) in the distant interaction approximation in which k ! 0; p; q ! 1.
Then

�(0)(k; t; s) =

Z �

k=p+q

dpdq B(k;p;q)G(0)(p; t; s)Q(0)(q; t; s)

�

Z �

dp
�
km

@B

@qm
(k;p;p)G(0)(p; t; s)Q(0)(p; t; s)

�B(k;p;p)G(0)(p; t; s)kmpmp
�1 dQ

(0)

dp
(p; t; s)
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where B(k;p;q) denotes the product of projection operators in Eq. (10) and
R �

denotes
infrared regularization by restriction of the region of integration to (p;q) pairs satisfying

p; q � k.29 Assuming time stationary similarity forms G(0)(p; t; s) = G(0)(pr(t � s)) and

Q(0)(p; t; s) = R(0)(pr(t � s))Q(0)(p), the properties Eq. (66) of H may reasonably be

postulated of the product G(0)R(0). Therefore, Eq. (67) implies that in this limit the
damping is Markovian

�(0)(k; t; s) = �(t � s)�(0)(k)

and Eq. (7) implies that the Green's function is exponential,

G(0)(k; t; s) = exp [(s � t)�(0)(k)] for t � s (68)

Likewise evaluating the force correlation Eqs. (11), (12) in the distant interaction limit
implies that the forcing is white noise in time:

< f
(0)

i (k; t)f
(0)

j (k0; s) > = �(t � s)�(k + k0)F
(0)

ij (k) (69)

Computing the correlation function from the relation

Q(0)(k; t; s)�(k + k0) =

Z t

0

dr1 G
(0)(k; t; r1)

Z t

0

dr2 G
(0)(k0; t; r2)�

< f (0)(k; r1)f
(0)(k0; r2) >

using Eqs. (68), (69) shows that the 
uctuation dissipation relation

Q(0)(k; t; s) = Q(0)(k)
�
G(0)(k; t; s) +G(0)(k; s; t)

�
(70)

expressing the time dependence of the correlation functions in terms of the response func-
tion is also valid in this limit.
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